sparse/dense array
有个用局部性原理优化的, 优势是
- Fastest unordered iteration speed
- Constant insertion and deletion
- Constant lookup by ID
- ID (but not pointer) stability
- OK (but not amazing) deterministic iteration speed
- Avoid with non trivially relocatable types
代码大概长这个样子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <cassert>
#include <vector>
template <typename T>
class DenseSparseArray {
public:
void insert(uint32_t entity, const T &value) {
if (entity >= sparse.size()) {
sparse.resize(entity + 1, -1); // -1 表示无效索引
}
if (sparse[entity] == -1) {
sparse[entity] = dense.size();
dense.push_back({entity, value});
}
}
void erase(uint32_t entity) {
if (contains(entity)) {
// 0
size_t dense_idx = sparse[entity];
auto &last = dense.back();
auto last_entity = last.entity;
std::swap(dense[dense_idx], last);
sparse[last_entity] = dense_idx;
dense.pop_back();
sparse[entity] = -1;
}
}
// 访问元素
T &operator[](uint32_t entity) {
assert(contains(entity));
cout << "entity idx: " << sparse[entity] << endl;
cout << "desze size: " << dense.size() << endl;
return dense[sparse[entity]].value;
}
// 判断是否存在
bool contains(uint32_t entity) const {
return entity < sparse.size() && sparse[entity] != -1;
}
// 迭代器支持
auto begin() { return dense.begin(); }
auto end() { return dense.end(); }
private:
struct Element {
uint32_t entity;
T value;
};
std::vector<int> sparse; // 稀疏数组(存储索引)
std::vector<Element> dense; // 密集数组(实际数据)
};
int main() {
DenseSparseArray<int> arr;
arr.insert(100, 42); // 插入 entity=100
arr.insert(200, 77); // 插入 entity=200
std::cout << arr[100]; // 输出 42
arr.erase(100); // 删除 entity=100
cout << arr[200] << '\n';
cout << arr[100] << '\n'; // assert 触发
}
This post is licensed under CC BY 4.0 by the author.